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Abstract

Graph neural networks (GNNs) are commonly employed in
collaborative friend recommendation systems. Nevertheless,
recent studies reveal a notable performance gap, particu-
larly for users with limited connections, commonly known
as tail users, in contrast to their counterparts with abundant
connections (head users). Uniformly treating head and tail
users poses two challenges for tail user preference learning:
(C1) Label Sparsity, as tail users typically possess limited la-
bels; and (C2) Neighborhood Sparsity, where tail users ex-
hibit sparse observable friendships, leading to distinct pref-
erence distributions and performance degradation compared
to head users. In response to these challenges, we introduce
Tail-STEAK, an innovative framework that combines self-
training with enhanced knowledge distillation for tail user
representation learning. To address (C1), we present Tail-
STEAKbase, a two-stage self-training framework. In the first
stage, only head users and their accurate connections are uti-
lized for training, while pseudo links are generated for tail
users in the second stage. To tackle (C2), we propose two data
augmentation-based self-knowledge distillation pretext tasks.
These tasks are seamlessly integrated into different stages
of Tail-STEAKbase, culminating in the comprehensive Tail-
STEAK framework. Extensive experiments, conducted on
state-of-the-art GNN-based friend recommendation models,
substantiate the efficacy of Tail-STEAK in significantly im-
proving tail user performance. Our code and data are publicly
available at https://github.com/antman9914/Tail-STEAK.

Introduction
Friend recommender systems play a crucial role in vari-
ous real-world applications, facilitating the discovery of po-
tential social relationships and enhancing user engagement.
The cornerstone of friend recommendation lies in learn-
ing effective user representations (Zhou et al. 2019). Re-
cently, inspired by the development of Graph Neural Net-
works (GNNs), higher-order collaborative signals in social
networks have been exploited for user representation learn-
ing and achieved significant improvement (Sankar et al.
2021). Despite their success, GNNs usually need qualified
and abundant structural connections to learn effective user
representations (Liu, Nguyen, and Fang 2021; Zheng et al.
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Figure 1: Empirical study of degree-related bias in friend
recommendation

2022), which high-degree users, or head users, can provide.
However, most real-world social networks follow power-law
node degree distribution (Adamic et al. 2001), where the ma-
jority of users are tail users with few links, as shown in Fig-
ure 1(a). As a result, due to limited observable interactions,
the preference of tail users is hard to learn, leading to inferior
performance in downstream recommendation tasks. As em-
pirically demonstrated in Figure 1(b), for friend recommen-
dation on Deezer and Last.FM social networks based on two
state-of-the-art GNN-based models Simple-HGN (Lv et al.
2021) and LightGCN (He et al. 2020), the degree-specific
predictive accuracy is approximately proportional to node
degree. We denote this phenomenon as degree-related bias.
Regrettably, contemporary recommendation algorithms of-
ten treat head users and tail users uniformly, resulting in the
under-representation of tail users. This bottleneck is deemed
unacceptable in real-world networks. Therefore, this paper
is dedicated to enhancing tail user preference learning for
friend recommendation with limited structural information.

We contend that mitigating degree-related bias in friend
recommendation introduces two challenges: (C1) Label
Sparsity, where the scarcity of labels for tail users compli-
cates preference learning, leading to an imbalance between
head and tail users; and (C2) Neighborhood Sparsity, as the
sparse interactions of tail users create a distinct preference
distribution compared to head users, posing challenges in ac-
curate anticipation and potentially resulting in a preference



gap. Related works mainly focus on (C2), which attempt to
transfer accurate structural knowledge of head nodes to tail
nodes for neighborhood sparsity alleviation (Liu et al. 2020;
Liu, Nguyen, and Fang 2021; Zheng et al. 2022; Hao et al.
2021), or leverage side information to enrich relational data
for inactive users (Zheng et al. 2021; Wang et al. 2019a;
Yan et al. 2023). Although they effectively enhance the per-
formance of inactive tail users, they not only ignore the more
fundamental challenge (C1), but also need external assis-
tance to solve (C2), which are usually overly complex.

To tackle the aforementioned challenges, we propose
Tail-STEAK, a novel Tail user oriented Self-Training
EnhAnced Knowledge distillation paradigm for alleviating
degree-related bias in GNN-based friend recommendation.
To address (C1), we overhaul the training paradigm, in-
troducing a fundamental two-stage self-training approach
named Tail-STEAKbase. Initially, only head users and their
well-qualified interactions are employed for model training
in the first stage, leveraging their abundant and relatively
accurate structural knowledge. Subsequently, in the second
stage, we iteratively conduct top-K pseudo link predictions
for tail users from a randomly sampled user set using the
model derived from the previous iteration. This model is
further refined using both the full training set and pseudo
links. For (C2), we propose two data augmentation-based
self-knowledge distillation pretext tasks. These tasks aim
to implicitly familiarize the model with both head and tail
user preference distributions, thereby mitigating preference
gaps. Conducted separately for head and tail users, these
tasks are integrated into the corresponding stages of Tail-
STEAKbase, forming the complete Tail-STEAK framework.
To achieve data augmentation, we introduce synthesized tail
users generated from original head users through aggres-
sive link dropout and ID embedding disturbance in both
stages. Additionally, we impute predicted pseudo links into
the tail users’ neighborhood and generate synthesized head
users in the second stage. All synthesized users are then inte-
grated into the training set for the respective stage. Diverging
from mainstream reconstruction-based knowledge distilla-
tion methods (Ji et al. 2021), we employ self-discrimination-
based distillation through Mutual Information (MI, denoted
as MI throughout the paper) maximization between the head
view and tail view of the same user.

It is essential to highlight that our proposed training
paradigm is entirely model-agnostic and does not rely on ad-
ditional customized modules or external data. We implement
our approach on two cutting-edge GNN-based friend recom-
mendation models, conducting comprehensive experiments
across three benchmark social networks. The empirical re-
sults showcase a substantial enhancement in predictive ac-
curacy for tail users, while maintaining competitive overall
performance. Furthermore, our proposed method is versatile
and applicable to general recommendation tasks and various
other link prediction scenarios.

In summary, our contributions are highlighted as follows:

• We introduce Tail-STEAKbase, a foundational two-stage
self-training paradigm designed for GNN-based friend
recommendation, offering qualified pseudo labels for tail

users to effectively address the label sparsity challenge.
• We devise distinct data augmentation strategies for head

and tail users, synthesizing tail users through both em-
bedding and structural space augmentation.

• We introduce two self-discrimination-based self-
knowledge distillation tasks, seamlessly integrated
into Tail-STEAKbase, enhancing the comprehensive
Tail-STEAK framework.

• Empirical experiments conducted on two GNN-based
friend recommendation models across two benchmark
social networks substantiate the superiority of our
method in tail user preference learning, while maintain-
ing competitiveness in head user learning.

Related Work
Degree Bias in GNN-based Recommendations
Although GNNs have become mainstream solution
for graph-related tasks and graph-based recommenda-
tion (Wang et al. 2019b; He et al. 2020; Wang et al. 2020;
Zhao et al. 2023), there are some recent work revealing
that GNNs are likely to suffer performance degradation on
tail nodes, which raises a degree-related fairness concern.
These works mostly focus on the sparse neighborhood of
tail nodes, and make attempts to transfer head structural
knowledge to them. For instance, DEMO-Net (Wu, He,
and Xu 2019) and SL-DSGCN (Tang et al. 2020) assign
interrelated degree-specific RNN-based parameters to input
nodes with different degrees; A la carte (Khodak et al.
2018) and Nonce2vec (Herbelot and Baroni 2017) propose
to conduct two-stage embedding refinement for robust tail
node embedding; Meta-tail2vec (Liu et al. 2020) further uti-
lizes meta-learning based two-stage embedding refinement
framework for locality-aware tail node embedding; Tail-
GNN (Liu, Nguyen, and Fang 2021) and Cold Brew (Zheng
et al. 2022) both propose to directly impute the weak
neighborhood of tail nodes. Tail-GNN utilize transferable
neighborhood translation to predict missing neighborhood,
while Cold Brew leverage self-attention based virtual
neighborhood discovery. Different from aforementioned
works, RawlsGCN (Kang et al. 2022) proposes a gradient
modulation method to achieve the degree-level Rawlsian
gradient fairness. GRADE (Wang et al. 2022) proposes a
graph contrastive learning method to enhance the inherent
community effect of networks via data augmentation.

Degree-related bias in graph-based recommendation is
also known as cold-start problem, which is usually allevi-
ated by introducing side information and constructing infor-
mative heterogeneous graphs, such as the profile of users
and items (Zheng et al. 2021; Zhang et al. 2023), knowl-
edge graphs (Wang et al. 2019a) and social networks (Liu
et al. 2021). There is also a recent work (Hao et al. 2021)
attempting to pre-train GNN-based recommendation mod-
els with reconstruction-based pretext task. Despite their suc-
cess, they either do not specifically designed for improving
tail user embeddings, or need additional modules or data,
which is overly complex. More importantly, they fail to pay
attention to the intuitive but critical challenge (C2).



Self-Knowledge Distillation

Self-knowledge distillation is a kind of knowledge distil-
lation, which has drawn growing attention in computer vi-
sion. Related works generally train a student network with-
out auxiliary teacher network, and they can be divided into
two groups: First group utilizes auxiliary networks. For ex-
ample, BYOT (Zhang et al. 2019) introduces a set of aux-
iliary weak classfiers to perform classification based on the
feature map of intermediate layers. FRSKD (Ji et al. 2021)
proposes an auxiliary self-teacher network to enable refined
knowledge transfer. The second group utilizes data augmen-
tation. DDGSD (Xu and Liu 2019) induces consistent pre-
diction by feeding differently augmented samples into en-
coder; CSKD (Yun et al. 2020) leverages different instances
of the same class as positive pairs for class-level regulariza-
tion, while SLA (Lee, Hwang, and Shin 2020) proposes to
augment data label by combining self-supervision task with
the original downstream task.

Our Tail-STEAK is inspired by data augmentation based
branch, and we adopt the framework proposed in (Xu and
Liu 2019). Most data augmentation based methods tend to
make intermediate feature maps or predicted logits of differ-
ent views to be similar. We also conduct distillation based on
the outputs of GNN encoders. However, different from ex-
isting works, Tail-STEAK maximizes the MI of embeddings
from different views instead of minimizing their Euclidean
distance, in order to avoid the reconstruction constraint.

Preliminaries

In this section, we present the problem formulation of alle-
viating degree-related bias.

Given an undirected social network denoted as
G = {V, E}, where V = {v1, v2, ..., vC}, E ⊆ V × V
represent the user set and the observed link set respectively.
Let X ∈ RC×δ and A ∈ RC×C denote the trainable ID
embedding matrix and adjacency matrix, where Xv: ∈ Rδ

is the ID embedding of user v, and Av: is the adjacency
vector originated from v. Auv = Avu = 1 iff (u, v) ∈ E .

Let Nv denotes the neighboring node set of node v ∈ V ,
and |Nv| denotes the degree of user v. We denote D ∈
RC×C as diagonal degree matrix, where Dvv = |Nv|. Given
degree threshold T , we can define the head node set Vhead

and tail node set Vtail as Vhead = {v : |Nv| > T} and
Vtail = {v : |Nv| ≤ T} respectively. It is obvious that
V = Vtail ∪ Vhead and Vtail ∩ Vhead = ∅. We further define
Chead and Ctail as the number of head/tail nodes respec-
tively, where Chead + Ctail = C. T is chosen based on the
degree distribution of the given network, which is set as the
median of given degree distribution in this work. The formal
problem definition is presented as follows:

Problem. Given a multi-layer GNN-based user encoder
f(X,A), our objective is to find a mapping f : V → Rδ

that can project each node v ∈ V into a δ-dimensional space,
and meanwhile obtain more effective tail user embeddings
{f(Xv:,Av:) : v ∈ Vtail}.

Methodology
In this section, we start with the introduction of our pro-
posed two-stage self-training paradigm Tail-STEAKbase to
solve (C1), along with the pseudo label prediction strategy.
Next, to solve (C2), we introduce the proposed data augmen-
tation strategy and self-knowledge distillation pretext tasks,
and present the full Tail-STEAK framework. An illustration
of the overall framework is presented in Figure 2.

Basic Self-Training Paradigm
Most existing methods for degree-related bias mitigation fail
to solve the fundamental label sparsity issue. To address
(C1), inspired by the widespread application of self-training
(Tang et al. 2020; Liu et al. 2022), we propose a basic self-
training paradigm denoted as Tail-STEAKbase to provide
more qualified pseudo links (i.e. labels) for tail users.

Self-training is generally a two-stage procedure, where
the model is first trained with available labelled data, and it-
eratively trained with both labelled data and pseudo-labeled
data generated from unlabelled data. Tail users have few
links, and directly using the whole E to train the model in
the first stage will be harmful for model performance. There-
fore, we first train the model only with interactions of head
users to learn more accurate user preference knowledge, and
then add interactions of tail users in the second stage.

As for iterative pseudo link prediction, in each iteration,
given tail users in the original training set, we first randomly
sample U users that have not connected with these tail users
from the whole graph, and then select the most relevant top-
K users based on model prediction, which will be regarded
as highly potential neighbors. The user subset sampling is
designed for memory efficient training and diversified gra-
dient provision. We simply set K = T to make head and
tail users have similar amount of labels. The weak links be-
tween target user and potential neighbors will be regarded as
pseudo links. The pseudo links are expected to be less noisy,
for that the model should have learned accurate preference
distribution from head users in the previous stage, and able
to automatically filter out noisy labels during iterative opti-
mization. The predicted pseudo links will be used for both
training and data augmentation, and will not participate the
message propagation process of original samples.

Self-Knowledge Distillation
Although pseudo links can explicitly provide more supervi-
sion signals for tail users, neighborhood sparsity issue (i.e.
(C2)) can also limit the model performance due to the in-
complete observable preference distribution. Existing solu-
tions tend to transfer relatively complete head preference
knowledge to tail users via a variety of customized mod-
ules, which often make them overly complex (Liu et al.
2020; Zheng et al. 2022; Liu, Nguyen, and Fang 2021). In
this work, we propose to leverage data augmentation based
self-knowledge distillation to extract effective tail user em-
beddings via learned head knowledge. These operations are
free of additional parameters and fully model-agnostic. We
first propose two data augmentation methods in both struc-
tural space and embedding space for head and tail users re-



Figure 2: Overview of the proposed Tail-STEAK framework.

spectively, and then introduce the MI maximization based
self-knowledge distillation pretext tasks.

Data augmentation. Synthesized data generation is the
critical component of data augmentation based self-
knowledge distillation (Xu and Liu 2019). In order to mit-
igate the preference gap between head and tail users, it is
natural to consider corrupting the informative neighborhood
and ID embedding of head users to simulate tail users, and
meanwhile imputing the neighborhood of tail users to pre-
dict their head view. Therefore, we propose to conduct ag-
gressive link dropout and ID embedding disturbance on head
users to generate synthesized tail users, and impute predicted
pseudo links of tail users into their neighborhood to generate
synthesized head users, respectively. We first define the two
independent data augmentation operator Γhead and Γtail for
synthesized tail user and head user generation respectively:

Γhead(Xv:,Av:, γ) = (X̃tail
v: , Ãtail

v: ), v ∈ Vhead (1)

Γtail(Xv:,Av:,M
p(v)) = (Xv:, Ã

head
v: ), v ∈ Vtail (2)

Γhead conducts data augmentation in both structure and
embedding space. For the structural space, denote γ as the
maximum preserved neighbors, we randomly select only a
few neighbors of each head node to keep, in order to simu-
late the sparse neighborhood of tail users. Formally, given
v ∈ Vhead, node degree |Nv| and amount of preserved
neighbors z = rand(0, γ), the neighbor preservation prob-
ability will be psv = z

|Nv| . Then, we can sample a random
mask Ms(v) ∈ {0, 1}N for v’s adjacency vector, where
Ms

i (v) ∼ B(psv) if Avi = 1 and Ms
i (v) = 0 otherwise.

The final adjacency vector of v can be denoted as:

Ãtail
v: = Av: ◦Ms(v) (3)

where ◦ is element-wise product. Note that the head link

dropout is only conducted in the first-hop, the higher-order
neighborhood are not affected.

For the embedding space, considering that the learned tail
user ID embeddings are always noisy due to label sparsity,
we add random noise Me(v) sampled from standard Gaus-
sian distribution to the original input user embedding Xv:

to simulate the noisy tail user embedding. The embedding
masking operation is only conducted on the center user.

X̃tail
v: = Xv: +Me(v), Me(v) ∼ N (0, I) (4)

As for the Γtail, we simply impute the neighborhood of
tail users with predicted pseudo links to generate synthe-
sized head users. Formally, for each v ∈ Vtail, given pre-
dicted pseudo adjacency vector Mp(v), the imputed adja-
cency vector of user v can be denoted as:

Ãhead
v: = Av: ∨Mp(v) (5)

where ∨ is element-wise union. Note that the imputa-
tion is only conducted in the first-hop neighborhood. We de-
note the synthesized tail/head user generated from user v as
vtail/vhead respectively.

Pretext tasks. We formulate the output of the final layer
of GNN-based user encoder as H = f(X,A), where hv is
v’s user embedding. Then, the output embedding matrix of
synthesized tail users and head users can be denoted as Htail

and Hhead respectively, which are defined as:

Htail = f(X̃tail
v: , Ãtail

v: ), Hhead = f(Xv:, Ã
head
v: ) (6)

where htail
v and hhead

v are the embeddings of vtail

and vhead. Generally, self-knowledge distillation is
reconstruction-oriented (Ji et al. 2021), where the outputs
of different input views are expected to be identical. In
this work, we instead adopt MI maximization and popular



InfoNCE contrastive loss for distillation to avoid the
strict reconstruction constraint. To adapt to the pair-wise
objective, the embeddings of original user and the corre-
spondingly generated synthesized users are regarded as
positive pairs, i.e. Stail = {(hv,h

head
v ) : v ∈ Vtail} and

Shead = {(hv,h
tail
v ) : v ∈ Vhead}. On the other hand,

the embeddings of synthesized users of other users within
the same batch will be regarded as negative samples. Using
MI-based distillation can make model pay more attention
to distributional consistency between synthesized and
corresponding source embeddings. Two distillation based
pretext tasks are defined on head and tail users respectively,
and their pairwise objective functions can be formulated as
Ldp and Lim:

ϕ(hi,hj) = exp(s(hv,h
tail
v )/τ) (7)

ldp(v, v
tail) = − log

ϕ(hv,h
tail
v )∑

(u,utail)∈Shead
ϕ(hv,htail

u )
, (8)

lim(v, vhead) = − log
ϕ(hv,h

head
v )∑

(u,uhead)∈Stail
ϕ(hv,hhead

u )
(9)

Ldp(v) = ldp(v, v
tail) + ldp(v

tail, v) (10)

Lim(v) = lim(v, vhead) + ldp(v
head, v) (11)

where s is the cosine similarity function, and τ is the
temperature hyperparamter. Note that although our proposed
self-knowledge distillation based pretext tasks are similar to
graph contrastive learning (GCL) based methods, such as
GRACE (Zhu et al. 2020) and SGL (Wu et al. 2021), they
are designed for different purposes. GCL methods devote to
exploit unlabeled data space to alleviate data sparsity and
improve overall performance. In contrast, our distillation-
based method is designed for alleviating neighborhood spar-
sity, where the synthesized users are leveraged to conduct
self-knowledge distillation, such that the derived model can
comprehend both head and tail user preference distributions.

Overall Framework
We first define the BPR loss (Rendle et al. 2009) Lt for
friend recommendation task, which is formulated as Eq. 12:

Lt(v, u) = − 1

Cn

∑
un∈Vn

[log(σ(g(v, u)− g(v, un)))] (12)

where un is negative sample, Vn is the negative user set,
and Cn is the size of Vn; g is the function for friendship pre-
diction, which is defined as a two-layer MLP here. Based on
Tail-STEAKbase and our proposed self-knowledge distilla-
tion mechanism, given link batch EB , the objective function
of the first stage can be formulated as L1 in Eq. 15:

Lhead
1 (v, u) = Lt(v, u) + Lt(v

tail, u) + Ldp(v) (13)

Lhead
1 =

1

|EB |
∑

(v,u)∈EB

1head(v)Lhead
1 (v, u) (14)

L1 = Lhead
1 + λ∥Ω∥2 (15)

# Node # Edge |Nv| Median # Tail
Deezer 28,281 92,752 4 15,814

Last.FM 136,409 1,685,524 8 45,389

Table 1: Dataset Statistics

where |EB | denotes batch size, Ω denotes all the train-
able parameters in encoder f , 1head is an indicator function
which returns 1 if the input user v ∈ Vhead else 0. λ is a
hyperparameter to control the strength of L2 regularization.

In the second stage, a new training set is constructed based
on both observed and generated links. Both distillation pre-
text tasks are adopted in this stage. The corresponding ob-
jective function can be formulated as L2 in Eq. 18, where
1tail is another indicator function that returns 1 if the input
user v ∈ Vtail else 0.

Ltail
2 (v, u) = Lt(v, u) + Lt(v

head, u) + Lim(v) (16)

Ltail
2 =

1

|EB |
∑

(v,u)∈EB

1tail(v)Ltail
2 (v, u) (17)

L2 = Ltail
2 + L1 (18)

Note that although Tail-STEAK is two-stage, we make
modifications solely to the input data and objective func-
tion, and no additional modules are integrated into the base
model, which keeps Tail-STEAK an end-to-end framework.

Experiments
Experimental Setup
Dataset. We conducted experiments on 2 public bench-
mark social networks, Deezer (Benedek and Rik 2020) and
Last.FM1. Both datasets are friendship networks collected
from different services in different time, where nodes and
edges represent users and mutual friendships respectively,
and node features are not available. The train/val/test split
ratio is 70%/10%/20% for all the datasets. For each friend-
ship to predict, We randomly sample 19 and 99 negative
samples for training and testing respectively. Relevant statis-
tics are presented in Table 1.

Base GNN Models. To evaluate the flexibility of our
method, we adopt LightGCN (He et al. 2020) and Simple-
HGN (Lv et al. 2021) (denoted as SHGN) as base GNNs.
LightGCN is one of the most popular models for recommen-
dation, while SHGN is a state-of-the-art GNN for heteroge-
neous graph learning. We remove the edge type embeddings
and adapt SHGN to friend recommendation task.

Baseline Methods. Except for the base GNN models,
We select four categories of baselines which are designed
for mitigating degree-related bias or data sparsity issue to
comprehensively evaluate our Tail-STEAK. (1) Graph con-
trastive learning methods: DGI (Veličković et al. 2019)
maximizes MI between node views from original and cor-
rupted graphs; GRACE (Zhu et al. 2020) augments graphs

1http://lfs.aminer.cn/lab-datasets/multi-sns/lastfm.tar.gz



SHGN LightGCN
> T ≤ T > T ≤ T

NDCG MRR NDCG MRR NDCG MRR NDCG MRR

Deezer

Base 0.5555 0.4943 0.2669 0.2352 0.5511 0.4948 0.2663 0.2278
DGI 0.5651 0.5088 0.2860 0.2528 0.5653 0.5115 0.2533 0.2178

GRACE 0.6186 0.5684 0.3108 0.2844 0.5743 0.5211 0.2494 0.2143
MvGRL 0.5778 0.5184 0.2709 0.2414 0.5593 0.5050 0.2611 0.2243

SGL 0.5881 0.5357 0.2974 0.2713 0.5724 0.5194 0.2489 0.2139
NCL 0.5921 0.5397 0.3059 0.2758 0.5788 0.5267 0.2475 0.2121

SimGCL 0.6023 0.5511 0.2894 0.2647 0.5733 0.5205 0.2501 0.2158
LFT 0.5486 0.4880 0.2525 0.2211 0.5603 0.5049 0.2674 0.2280
MoE 0.5457 0.4843 0.2751 0.2399 - - - -

Tail-GNN 0.4660 0.4180 0.1786 0.1412 0.5644 0.5089 0.2486 0.2121
SSNet 0.5574 0.4954 0.2649 0.2350 0.5780 0.5250 0.2499 0.2182

Tail-STEAKno-mask 0.5414 0.4776 0.3258 0.2898 0.5549 0.5109 0.3225 0.2918
Tail-STEAKfull 0.5845 0.5293 0.3550 0.3337 0.5687 0.5210 0.3139 0.2755

Tail Improv. - - 14.22% 17.33% - - 20.60% 28.09%

Last.FM

Base 0.6239 0.5560 0.3153 0.2879 0.6372 0.5692 0.2965 0.2414
DGI 0.6292 0.5618 0.3077 0.2747 0.6365 0.5684 0.2978 0.2424

GRACE 0.6682 0.6070 0.4214 0.3904 0.6432 0.5762 0.3020 0.2436
MvGRL 0.6323 0.5652 0.3103 0.2818 0.6395 0.5726 0.3024 0.2495

SGL 0.6449 0.5794 0.3233 0.2764 0.6397 0.5720 0.3087 0.2498
NCL 0.6482 0.5838 0.3472 0.3059 0.6302 0.5614 0.2715 0.2123

SimGCL 0.6483 0.5838 0.3797 0.3475 0.6389 0.5710 0.3034 0.2446
LFT 0.6175 0.5501 0.1722 0.1399 0.6345 0.5657 0.3101 0.2480
MoE 0.6208 0.5520 0.3211 0.2923 - - - -

Tail-GNN 0.6003 0.5308 0.3281 0.2872 0.6421 0.5749 0.2768 0.2202
SSNet 0.6238 0.5561 0.3167 0.2905 0.6572 0.5953 0.3328 0.2961

Tail-STEAKno-mask 0.6154 0.5547 0.3784 0.3241 0.6290 0.5631 0.4594 0.3956
Tail-STEAKfull 0.6455 0.5822 0.5409 0.5023 0.6352 0.5698 0.4199 0.3537

Tail Improv. - - 28.36% 28.66% - - 48.15% 58.37%

Table 2: Degree-Related NDCG@10 and MRR Evaluation Results. Boldfaced scores are the best ones.

by link dropout and node feature masking, and corre-
lates generated views via self-discrimination; MvGRL (Has-
sani and Khasahmadi 2020) introduces graph diffusion into
graph contrastive learning. They aim to exploit the unlabeled
data space and alleviate data sparsity, but they do not specif-
ically focus on tail node improvement. (2) Adaptive embed-
ding refinement models: LFT (Zhu and Caverlee 2022) first
learn a common prior model with all available labels, which
is then fine-tuned with nodes with different degrees. Simi-
larly, MoE (Masoudnia and Ebrahimpour 2014) trains sev-
eral expert encoders for nodes with different degrees, and
then derive the best expert combinations via a degree-aware
gating network. Note that MoE is not applicable for Light-
GCN, for that there is no encoder in LightGCN. (3) Weak
neighborhood imputation models: Tail-GNN (Liu, Nguyen,
and Fang 2021) attempts to directly impute weak neighbor-
hood of tail nodes via transferable neighborhood translation.
(4) Self-supervised learning methods for recommendation:
SGL (Wu et al. 2021) and SimGCL (Yu et al. 2022) perform
augmentation over graph structure and user embeddings via
random dropout respectively. NCL (Lin et al. 2022) pro-
poses heuristic-based strategies to construct different views
based on structural and semantic neighborhood. They are de-
signed specifically for recommendation, in order to alleviate
data sparsity issue. We also adopt SSNet (Song et al. 2022)
for comparison, which is recently proposed to alleviate scale
distortion issue in friend recommendation.

We do not consider meta-tail2vec (Liu et al. 2020) and
Cold Brew (Zheng et al. 2022) as baselines, for that embed-
ding reconstruction is required in both methods, which is not
suitable for recommendation. GRADE (Wang et al. 2022)
is also abandoned due to its massive memory requirement.
For our method, we evaluate two versions of Tail-STEAK.
Tail-STEAKno-mask removes the feature-space operation in
the first stage, while Tail-STEAKfull is the full version.

Evaluation Metrics. Following previous works of friend
recommendation, we adopt 2 commonly used metrics for
evaluation, which are MRR (Mean Reciprocal Ranking)
and NDCG@K (Normalized Discounted Curriculum Gain).
Both MRR and NDCG can reflect the ranking quality. We
set K = 10 for NDCG@K.

Implementation Details. We implement Tail-STEAK via
PyTorch-Geometric (Fey and Lenssen 2019). We adopt 2-
layer GNN architecture, and ID embedding dimension δ is
fixed as 64. γ in Γhead and U for pseudo link generation
are tuned from {1,2,...,8} and {200, 500, 1000, 2000} re-
spectively. Adam (Kingma and Ba 2014) is adopted for op-
timization with learning rate 0.001, and λ = 0.0001. You
can refer to our Github repo for more details.

Comparative Results
We report the average degree-related performance of our
proposed Tail-STEAK and other baselines after 5 runs with



Methods
SHGN LightGCN

> T ≤ T > T ≤ T
Tail-STEAKfull 0.5845 0.3550 0.5687 0.3139
w/o ID disturb 0.5414 0.3258 0.5549 0.3225

w/o 2nd tail-based KD 0.5983 0.3685 0.5577 0.2585
w/o 2nd KD 0.5939 0.3628 0.5588 0.2575

w/o 2nd stage 0.5951 0.3656 0.5693 0.2481
w/o sep stage 0.5844 0.3458 0.5477 0.2569

w/o user subset sample 0.6108 0.3381 0.5806 0.2663
w/o MI loss 0.5137 0.3132 0.5444 0.2531

w/o KD 0.5588 0.3378 0.5507 0.2603

Table 3: Degree-Related NDCG@10 Evaluation Results of
Ablation Study on Deezer.

different seeds in Table 2. The relative improvement of
tail user performance is also presented. We have follow-
ing observations: (1) Our Tail-STEAK consistently outper-
forms state-of-the-art baselines by a large margin in terms
of tail users in both base GNN models and in both selected
datasets.(2) Althogh head user performance of Tail-STEAK
always drops compared with the best-performing baselines,
it alomst consistently outperforms baselines specifically tai-
lored to address degree-related bias like Tail-GNN and LFT.
(3) Among all contrastive learning based methods, only
GRACE improve both head and tail user performance com-
pared with base model. DGI and MvGRL mainly improve
head user performance, while the effect of SGL, NCL and
SimGCL depends on specific dataset. (4) LFT and MoE are
less beneficial and even harmful for both head and tail user
performance. We believe the reason is that model adapta-
tion based on few labels of tail users may cause over-fitting.
However, for LightGCN, LFT can significantly improve tail
user performance. (5) Both Tail-GNN and SSNet can effec-
tively improve both head and tail user performance of Light-
GCN in certain datasets. However, they are much less effec-
tive and even harmful for SHGN. (6) By comparing Tail-
STEAKno-mask and Tail-STEAKfull, we can find that the ID
embedding disturbance operation has significant impact on
the model performance, which is beneficial for SHGN and
harmful for LightGCN. We believe the reason is that random
noise in feature space is helpful for the learning of GNNs
with non-linear transformations like SHGN.

Ablation Study
To empirically discuss the impact of each proposed com-
ponent, we conduct two branches of ablation experiments
on Deezer. Specifically, in the first branch, we first remove
terms Ltail

2 (w/o 2nd tail-based KD) and Lhead
1 +Ltail

2 (w/o
2nd KD) in L2 respectively, and then remove the whole sec-
ond stage (w/o 2nd stage). In the second branch, we dis-
cuss several noteworthy alternatives of Tail-STEAK. We
first re-train GNN models only based on the second stage
(w/o sep stage), and then use all available users for pseudo
link prediction (w/o user subset sample). We also replace
the MI maximization based distillation loss with traditional
reconstruction-based loss (w/o MI loss), and further replace
the distillation strategy with pure data augmentation oper-
ation (w/o KD), where the synthesized users are only used

as training samples. Note that we have shown the impact of
ID embedding disturbance (w/o ID disturb) in previous sec-
tion, so we will skip relevant discussion here. We report the
degree-related evaluation results in Table 3.

Based on the evaluation results, we can find that our pro-
posed components have different impact on different base
model. For the first branch: (1) For SHGN, head user based
self-knowledge distillation significantly improves both head
and tail user performance, while tail user based distillation
can be harmful for both user groups. Predicting pseudo links
can bring limited improvement for SHGN-based friend rec-
ommenders, and the pseudo labels may harm the perfor-
mance without the guidance of head user based distillation.
(2) For LightGCN, head user based distillation has little
impact on tail user performance, which is opposite for tail
user based distillation. Pseudo link prediction is also criti-
cal for improving tail user performance for LightGCN-based
recommender. For the second branch: (1) Separating Tail-
STEAK into two stages and pre-train a qualified model in
the first stage is necessary for SHGN, while it is less help-
ful for LightGCN. (2) Introducing diversified supervision
signals via randomly sampled potential friends is helpful
for SHGN-based friend recommender optimization, which
can also be harmful for LightGCN-based recommenders.
(3) MI maximization based distillation loss is superior than
reconstruction-based distillation loss for both base models.
(4) Removing all the knowledge distillation based objective
terms will lead to significant performance degradation for
SHGN, while have little impact on LightGCN.

The reason why proposed components have different im-
pact lies in the significant difference of base model architec-
ture . There is no actual encoder in LightGCN, which only
has ID embedding layer and iteratively performs message
propagation among adjacent users. In contrast, SHGN has
trainable encoders with non-linear transformations.

Conclusion
In this work, we studied the problem of degree-related bias
in graph-based friend recommendation. We identify two ma-
jor challenges in this problem: (C1) Label sparsity; (C2)
Neighborhood sparsity. To tackle these challenges, we pro-
pose Tail-STEAK, a novel model-agnostic self-training en-
hanced knowledge distillation framework free of additional
parameters. Tail-STEAK is developed based on a two-stage
self-training paradigm named Tail-STEAKbase to address
(C1), where only head nodes and their qualified connections
are used for model training in the first stage, followed by
predicting pseudo links for tail users in the second stage. To
address (C2), two data augmentation-based self-knowledge
distillation pretext tasks are further incorporated into Tail-
STEAK, which conduct data augmentation in both feature
and structural space to distill the rich knowledge of head
users into tail users, in order to help model comprehend
both head and tail user preference distributions. Comprehen-
sive experiments on two GNN-based friend recommenda-
tion models and benchmark datasets demonstrate that Tail-
STEAK can significantly improve tail user performance, and
meanwhile maintains competitive head user performance.
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